Adaptive LOS Path Following for a Podded Propulsion Unmanned Surface Vehicle with Uncertainty of Model and Actuator Saturation

نویسندگان

  • Dongdong Mu
  • Guofeng Wang
  • Yunsheng Fan
  • Xiaojie Sun
  • Bingbing Qiu
چکیده

This paper addresses three related issues concerning the path following control of a podded propulsion unmanned surface vehicle (USV), namely modeling, guidance and control. The pod is different from the general propeller-rudder propulsion device, and its essence is a vector thruster. Therefore, first, through various assumptions and simplification, the three-degree of freedom (DOFs) planar motion model of the podded propulsion USV is established. Then, the classical line-of-sight (LOS) guidance strategy is improved by adaptive sideslip angle and a time-varying lookahead distance. Based on the guidance system, the corresponding controllers for yaw rate and surge speed are presented, which are combined by backstepping technology, the neural network minimum parameter learning method and the neural shunting model. Specifically, the neural network minimum parameter learning method is proposed to compensate the uncertainty of the model and the immeasurability of external disturbances, and the neural shunting model is employed to cope with the “explosion of complexity” problem of backstepping. Meanwhile, an auxiliary dynamic system is introduced to prevent actuator saturation (input saturation). All error signals of the system are proven to be uniformly ultimately bounded (UUB) by employing Lyapunov stability theory. Finally, two numerical simulations are given to prove the correctness of the proposed scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Adaptive Control of Unmanned Aerial Vehicle for Carrying Time-Varying Cargo on Predefined Path

At present, the use of unmanned aerial vehicles (UAVs) has been increased dramatically. The reasons for this development are cheapness, smallness, simplicity, and diversity of missions. The simplicity of guidance and control of multi-rotor drones is that they are equipped with an autopilot system. This system is responsible for flying control. UAVs do not have a high weight and often have three...

متن کامل

Adaptive Control of Unmanned Aerial Vehicles - Theory and Flight Tests

Typically, unmanned aerial vehicles are underactuated systems i.e., they have fewer independent control inputs than degrees of freedom. In a helicopter for example, the body-axis roll, pitch, yaw and altitude axis are fully actuated. However, lateral and longitudinal translational motion is only possible by tilting the thrust vector. This chapter develops a 6 degree-of-freedom flight control al...

متن کامل

Path Following and Velocity Optimizing for an Omnidirectional Mobile Robot

In this paper, the path following controller of an omnidirectional mobile robot (OMR) has been extended in such a way that the forward velocity has been optimized and the actuator velocity constraints have been taken into account. Both have been attained through the proposed model predictive control (MPC) framework. The forward velocity has been included into the objective function, while the a...

متن کامل

Control of the longitudinal flight dynamics of an UAV using adaptive backstepping

An adaptive backstepping approach is used to control the longitudinal dynamics of an Unmanned Air Vehicle (UAV). The nonlinear controller designed makes the system follow references in the aerodynamic velocity and flight path angle, using the elevator deflections and the thrust as actuators. Moreover, the (global) solution is valid for all the flight envelope, since it is based on a general non...

متن کامل

Adaptive Nonlinear Model Predictive Path Tracking Control for a Fixed-Wing Unmanned Aerial Vehicle

This paper presents an adaptive Nonlinear Model Predictive Control (NMPC) for the path tracking control of a fixed-wing unmanned aircraft. The objective is to minimize the mean and maximum error between the reference trajectory and the UAV. Navigating in a cluttered environment requires accurate tracking. However linear controllers cannot provide good tracking performance due to nonlinearities ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017